Isolation and characterization of a novel peroxidase gene ZPO-C whose expression and function are closely associated with lignification during tracheary element differentiation.

نویسندگان

  • Yasushi Sato
  • Taku Demura
  • Ken Yamawaki
  • Yukina Inoue
  • Seiichi Sato
  • Munetaka Sugiyama
  • Hiroo Fukuda
چکیده

In an attempt to elucidate the regulatory mechanism of vessel lignification, we isolated ZPO-C, a novel peroxidase gene of Zinnia elegans that is expressed specifically in differentiating tracheary elements (TEs). The ZPO-C transcript was shown to accumulate transiently at the time of secondary wall thickening of TEs in xylogenic culture of Zinnia cells. In situ hybridization indicated specific accumulation of the ZPO-C transcript in immature vessels in Zinnia seedlings. Immunohistochemical analysis using anti-ZPO-C antibody showed that the ZPO-C protein is abundant in TEs, especially at their secondary walls. For enzymatic characterization of ZPO-C, 6 x His-tagged ZPO-C was produced in tobacco cultured cells and purified. The ZPO-C:6 x His protein had a peroxidase activity preferring sinapyl alcohol as well as coniferyl alcohol as a substrate, with a narrow pH optimum around 5.25. The peroxidase activity required calcium ion and was elevated by increasing Ca2+ concentration in the range of 0-10 mM. An Arabidopsis homolog of ZPO-C, At5g51890, was examined for expression patterns with transgenic plants carrying a yellow fluorescent protein (YFP) gene under the control of the At5g51890 promoter. The YFP fluorescence localization demonstrated vessel-specific expression of At5g51890 in the Arabidopsis roots. Taken collectively, our results strongly suggest that ZPO-C and its homologs play an important role in lignification of secondary cell walls in differentiating TEs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.

Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidops...

متن کامل

From Zinnia to Arabidopsis: approaching the involvement of peroxidases in lignification.

Zinnia elegans constitutes one of the most useful model systems for studying xylem differentiation, which simultaneously involves secondary cell wall synthesis, cell wall lignification, and programmed cell death. Likewise, the in vitro culture system of Z. elegans has been the best characterized as the differentiation of mesophyll cells into tracheary elements allows study of the biochemistry a...

متن کامل

Changes in the activity and mRNA of cinnamyl alcohol dehydrogenase during tracheary element differentiation in zinnia.

Changes in the enzymatic activity of cinnamyl alcohol dehydrogenase (CAD) and in the expression of a gene for CAD during tracheary element (TE) differentiation were investigated in cultures of single cells isolated from the mesophyll of zinnia (Zinnia elegans). In cultures in which TE differentiation was induced (TE-inductive cultures), CAD activity increased from h 36 after the start of cultur...

متن کامل

Gene Expression Profile of CatSper3 and CatSper4 during Postnatal Development of Mouse Testis

Channel activities, particularly those of calcium channels, have vital roles in the process of sperm maturation, motility and sperm-egg interaction. A group of the recently discovered ion channels associated with these processes is four novel channel-like proteins known as CatSper (cation channel sperm) gene family. CatSper1 and CatSper2 show sperm specific expression patterns. However, neither...

متن کامل

Effects of Hydrogen Peroxide Oxidative Stress on the Pattern of Pro-apoptotic and Anti-apoptotic Genes Expression During PC12 Cells Differentiation

Background and Aims:In neurodegenerative disorders,oxidative stress mediated by reactive oxygen species is strongly associated with increased neuronal damages which can lead to apoptosis. Pro-apoptotic and anti-apoptotic gene expressions are changed during the cell differentiation that affect cell viability and differentiation. Therefore, this study was conducted to determine the effects of hyd...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant & cell physiology

دوره 47 4  شماره 

صفحات  -

تاریخ انتشار 2006